Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Exp Ophthalmol ; 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363022

RESUMO

The escalating incidence of diabetes mellitus has amplified the global impact of diabetic retinopathy. There are known structural and functional changes in the diabetic retina that precede the fundus photography abnormalities which currently are used to diagnose clinical diabetic retinopathy. Understanding these subclinical alterations is important for effective disease management. Histology and high-resolution clinical imaging reveal that the entire neurovascular unit, comprised of retinal vasculature, neurons and glial cells, is affected in subclinical disease. Early functional manifestations are seen in the form of blood flow and electroretinography disturbances. Structurally, there are alterations in the cellular components of vasculature, glia and the neuronal network. On clinical imaging, changes to vessel density and thickness of neuronal layers are observed. How these subclinical disturbances interact and ultimately manifest as clinical disease remains elusive. However, this knowledge reveals potential early therapeutic targets and the need for imaging modalities that can detect subclinical changes in a clinical setting.

2.
Sci Rep ; 13(1): 18923, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919331

RESUMO

Microvascular dysfunction is the underlying pathological process in many systemic diseases. However, investigation into its pathogenesis is impeded by the accessibility and complexity of the microvasculature within different organs, particularly for the central nervous system. The retina as an extension of the cerebrum provides a glimpse into the brain through which the microvasculature can be observed. Two major questions remain unanswered: How do the microvessels regulate spatial and temporal delivery to satisfy the varying cellular demands, and how can we quantify blood perfusion in the 3D capillary network? Here, quantitative measurements of red blood cell (RBC) speed in each vessel in the field were made in the in vivo rat retinal capillary network using an ultrafast confocal technique with fluorescently labelled RBCs. Retinal RBC speed and number were found to vary remarkably between microvessels ranging from 215 to 6641 microns per second with significant variations spatially and temporally. Overall, the RBC speed was significantly faster in the microvessels in the superficial retina than in the deep retina (estimated marginal means of 2405 ± 238.2 µm/s, 1641 ± 173.0 µm/s respectively). These observations point to a highly dynamic nature of microvasculature that is specific to its immediate cellular environment and is constantly changing.


Assuntos
Microvasos , Retina , Ratos , Animais , Retina/diagnóstico por imagem , Microvasos/diagnóstico por imagem , Microvasos/fisiologia , Perfusão , Eritrócitos/fisiologia , Encéfalo/irrigação sanguínea , Vasos Retinianos/diagnóstico por imagem , Vasos Retinianos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...